Bernd C. Kellner
Göttingen, Germany
Email: bk (at) bernoulli.org


Über irreguläre Paare höherer Ordnungen.
Diplomarbeit. Mathematisches Institut der Georg-August-Universität zu Göttingen, Germany, 2002.
Online: irrpairord.pdf  (891 KB)


  1. On irregular prime power divisors of the Bernoulli numbers. Math. Comp. 76, No. 257, (2007), 405–441.
    Zbl: 1183.11012DOI: 10.1090/S0025-5718-06-01887-4
  2. On asymptotic constants related to products of Bernoulli numbers and factorials. Integers 9 (2009), Article A08, 83–106.
    Zbl: 1163.11014DOI: 10.1515/INTEG.2009.009
  3. On stronger conjectures that imply the Erdős–Moser conjecture. J. Number Theory 131, No. 6, (2011), 1054–1061.
    Zbl: 1267.11031DOI: 10.1016/j.jnt.2011.01.004
  4. On quotients of Riemann zeta values at odd and even integer arguments. J. Number Theory 133, No. 8, (2013), 2684–2698.
    Zbl: 1290.11118DOI: 10.1016/j.jnt.2013.02.008
  5. Identities between polynomials related to Stirling and harmonic numbers. Integers 14 (2014), Article A54, 1–22.
    Zbl: 1315.11018Link: INTEGERS Vol. 14
  6. The topology of Stein fillable manifolds in high dimensions II. Geom. Topol. 19 (2015), 2995–3030.
    Appendix by Bernd C. Kellner.   Authors: Jonathan Bowden, Diarmuid Crowley, András I. Stipsicz.
    Zbl: 06503559DOI: 10.2140/gt.2015.19.2995
  7. On a product of certain primes. J. Number Theory 179 (2017), 126–141.
    Zbl: 06739165DOI: 10.1016/j.jnt.2017.03.020
  8. Power-Sum Denominators. Amer. Math. Monthly 124 (2017), 695–709.
    Coauthor: Jonathan Sondow.
  9. The denominators of power sums of arithmetic progressions, submitted.
    Coauthor: Jonathan Sondow.
  10. On theorems of von Staudt and Carlitz about power sums. In preparation.


  1. The equation denom(Bn) = n has only one solution. Online: denombneqn.pdf
  2. On the p-divisibility of the sequence Blpr / lpr. Online: pdivbn.pdf
  3. Preprints on arXiv.org.